A SOLUTION OF WARNER'S 3RD PROBLEM FOR REPRESENTATIONS OF HOLOMORPHIC TYPE¹

BY FLOYD L. WILLIAMS

ABSTRACT. In response to one of ten problems posed by G. Warner, we assign (to the extent that it is possible) a geometric or cohomological interpretation—in the sense of Langlands—to the multiplicty in $L^2(\Gamma \setminus G)$ of an irreducible unitary representation π of a semisimple Lie group G, where Γ is a discrete subgroup of G, in the case when π has a highest weight.

1. Introduction. Given a discrete subgroup Γ of a semisimple Lie group G and a special class of nontempered unitary representations π of G, we express the multiplicity of π in $L^2(\Gamma \backslash G)$ as the dimension of the sheaf cohomology of a line bundle over $\Gamma \backslash G$ modulo a compact Cartan subgroup of G, and we find the best vanishing theorem for this cohomology. These prototype results extend those known in the case when π is a discrete series representation.

In more detail let G be connected noncompact and linear, and assume Γ is cocompact in G and torsion free. We assume G has the rank of a maximal compact subgroup K and we fix a Cartan subgroup H of G contained in K. Let $\mathfrak{g}, \mathfrak{k}, \mathfrak{h}$ denote the complexified Lie algebras of G, K, H respectively, let $\Delta = \Delta(\mathfrak{g}, \mathfrak{h})$ be the set of nonzero roots of \mathfrak{g} relative to \mathfrak{h} , let \mathfrak{g}_{β} be the root space of $\beta \in \Delta$, and let Δ_k, Δ_n be the set of compact, noncompact roots respectively in Δ . Given a choice of a positive system of roots Δ^+ in Δ one can assign a unique G-invariant holomorphic structure on the quotient D = G/H such that the space of antiholomorphic tangent vectors at the origin is given by

(1.1)
$$\mathfrak{n} = \sum_{\alpha \in \Lambda^+} \mathfrak{g}_{-\alpha}.$$

A homogeneous line bundle $\mathcal{L}_{\lambda} \to D$ over D induced by a character λ of H also has a G-invariant holomorphic structure and thus we can consider for $Y = \Gamma \setminus D$ the space $H^q(Y, \mathcal{L}_{\lambda})$ of Γ -invariant \mathcal{L}_{λ} -valued harmonic C^{∞} forms of type (0, q) on D, relative to some G-invariant Hermitian metrics on D, \mathcal{L}_{λ} . Alternately $H^q(Y, \mathcal{L}_{\lambda})$ is the qth-dimensional cohomology of Y with coefficients in the sheaf \mathcal{O}_{λ} of local holomorphic sections of $\Gamma \setminus \mathcal{L}_{\lambda}$. Define

$$(1.2) q(\lambda) = |\{\alpha \in \Delta_k^+: (\lambda + \delta, \alpha) < 0\}| + |\{\alpha \in \Delta_n^+: (\lambda + \delta, \alpha) > 0\}|$$

where $\Delta_k^+ = \Delta^+ \cap \Delta_k$, $\Delta_n^+ = \Delta^+ \cap \Delta_n$, $2\delta = \langle \Delta^+ \rangle$ (the sum of roots in Δ^+), (·) is the Killing form of \mathfrak{g} , and where |S| denotes the cardinality of a set S. Assume that $\lambda + \delta$ is regular and let $\pi_{\lambda + \delta} \in \hat{G}$ (the unitary dual of G) be the corresponding

Received by the editors February 5, 1985. A portion of these results were included in a presentation to the A.M.S. 822nd meeting, October 26-27, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 22E45; Secondary 32L10, 32M15.

¹ Research supported by NSF Grant No. PRM 8205819.

Harish-Chandra discrete series representation of G. If $m_{\lambda+\delta}(\Gamma)$ denotes the multiplicity of $\pi_{\lambda+\delta}$ in $L^2(\Gamma\backslash G)$ then for a very mild condition on λ (see (2.10) below) we know that

(1.3)
$$(i) \ H^{q}(Y, \mathcal{L}_{\lambda}) = 0 \quad \text{for } q \neq q(\lambda) \text{ in } (1.2),$$

$$(ii) \ \dim H^{q(\lambda)}(Y, \mathcal{L}_{\lambda}) = m_{\lambda + \delta}(\Gamma).$$

(1.3) is the solution of a conjecture of Langlands [2, 3]—obtained in part in [5] and fully in [9]. It is natural to consider therefore the extent to which analogues of (1.3) are possible for a nondiscrete series $\pi \in \hat{G}$. This is the content of problem 3 of Warner [6, p. 139]. Given such a π one of the first steps is to find a candidate $q(\lambda, \pi)$ for the role of $q(\lambda)$.

In this paper we assume that G/K has a G-invariant holomorphic structure compatible with the choice Δ^+ above and we assume that $\pi \in \hat{G}$ is a highest weight representation with a nonsingular infinitesimal character. Then we find the right candidate $q(\lambda,\pi)$ and the analogue of (1.3)(ii). Regarding (1.3)(i) our results indicate however that one must expect, in general, the existence of nonzero cohomology in dimensions $\neq q(\lambda,\pi)$ (which prevents the immediate computation of $m_{\pi}(\Gamma)$ by an index formula). We determine all such dimensions. The main result is Theorem 3.9, which appears in sharper form in Theorem 3.13. Theorem 3.9 relies basically on results developed in [4,7,8].

2. More notation. As before we shall write $\langle Q \rangle$ for the sum of roots in a subset Q of Δ . We denote by W, W_k the Weyl groups of $(\mathfrak{g}, \mathfrak{h}), (\mathfrak{k}, \mathfrak{h})$ respectively, and by \mathcal{F} the set of integral linear forms on the dual space \mathfrak{h}^* of \mathfrak{h} . Let $\Delta^+ \subset \Delta$ be as before, a positive system which we fix from now on. For $\Lambda \in \mathfrak{h}^*$ such that $\Lambda + \delta$ is regular, we set

$$(2.1) \begin{split} P^{(\Lambda)} &= \{\alpha \in \Delta \colon (\Lambda + \delta, \alpha) > 0\}, \qquad 2\delta^{(\Lambda)} &= \langle P^{(\Lambda)} \rangle, \\ Q_{\Lambda} &= \{\alpha \in \Delta_{n}^{+} \colon (\Lambda + \delta, \alpha) > 0\}, \qquad Q_{\Lambda}' &= \Delta_{n}^{+} - Q_{\Lambda}, \\ \mathfrak{b}_{\Lambda} &= \mathfrak{h} + \sum_{\alpha \in P^{(\Lambda)}} \mathfrak{g}_{\alpha} \quad \text{(a Borel subalgebra)}. \end{split}$$

Define

(2.2)
$$\mathcal{F}_0' = \mathcal{F}_0'(\Delta^+) = \{ \Lambda \in \mathcal{F} : \Lambda + \delta \text{ is regular and } \Delta_k^+ \text{-dominant} \}; \\ 2\delta_k = \langle \Delta_k^+ \rangle, \quad \delta_n = \delta - \delta_k.$$

If $\theta = m + u$ is a Levi decomposition of a parabolic subalgebra θ of \mathfrak{g} with unipotent radical u and a reductive complement m, we let $\Delta(m), \Delta(u)$ denote the roots of m, u respectively and we set

(2.3)
$$\theta_{u,n} = \text{the set of noncompact roots in } \Delta(u).$$

Thus if $P \subset \Delta$ is any positive system and θ contains the Borel subalgebra $\mathfrak{h} + \sum_{\alpha \in P} \mathfrak{g}_{\alpha}$ then

(2.4)
$$m = \mathfrak{h} + \sum_{\alpha \in \Delta(m)} \mathfrak{g}_{\alpha}, \quad u = \sum_{\alpha \in P - \Delta(m)} \mathfrak{g}_{\alpha}, \quad \theta_{u,n} = P_n - \Delta(m)$$

where $P_n = P \cap \Delta_n$. In particular if $\theta \supset \mathfrak{b}_{\Lambda}$ for $\Lambda \in \mathcal{F}'_0$ we define

$$(2.5) q(\Lambda;\theta) = 2|\theta_{u,n} \cap Q_{\Lambda}| - |\theta_{u,n}| + |Q'_{\Lambda}|.$$

Then $q(\Lambda; \theta)$ is a nonnegative integer. A collection of parabolic subalgebras $\{\theta_i\}_{i=1}^t$ each containing \mathfrak{b}_{Λ} , $\Lambda \in \mathcal{F}'_0$, is called representative if $\theta_{u_{i,n}} \neq \theta_{u_{j,n}}$ for $i \neq j$, $1 \leq i, j \leq t$, and if for any parabolic subalgebra $\theta \supset \mathfrak{b}_{\Lambda}$ we have $\theta_{u,n} = \theta_{u_{i,n}}$ for some i. This definition is equivalent to that given in [8]; we thank Professor Kostant for pointing this out to us. Given such a collection we have the following important sets: For an integer $q \geq 0$

(2.6)
$$S(\Lambda, q) \stackrel{\text{def}}{=} \{i: q(\Lambda; \theta_i) = q \text{ and } \theta_{u_{i,n}} = \theta_{u,n} \text{ for some parabolic}$$

subalgebra $\theta = m + u \supset \mathfrak{b}_{\Lambda} \text{ with } (\Lambda + \delta - \delta^{(\Lambda)}, \Delta(m)) = 0\}.$

PROPOSITION 2.7. Let $\{\theta_i\}_{i=1}^t$ be a representative set of parabolics $\supset \mathfrak{b}_{\Lambda}$ for $\Lambda \in \mathcal{F}_0'$, and let $\theta = m + u \supset \mathfrak{b}_{\Lambda}$ be any parabolic such that $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(m)) = 0$. Let i_0 be the unique index, $1 \leq i_0 \leq t$, such that $\theta_{u,n} = \theta_{u_{i_0},n}$. Then $i_0 \in S(\Lambda, q(\Lambda; \theta))$. If moreover Λ satisfies the condition

(2.8)
$$(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) \neq 0 for \alpha \in Q_{\Lambda} \cup \theta_{u,n}$$

then in fact $Q_{\Lambda} \subset \theta_{u,n}, \ q(\Lambda; \theta) = |Q_{\Lambda}| + |\Delta_n^+| - |\theta_{u,n}| \ and \ S(\Lambda, q(\Lambda; \theta)) = \{i_0\}.$

Note: Since $\Lambda + \delta - \delta^{(\Lambda)}$ is $P^{(\Lambda)}$ -dominant and $Q_{\Lambda} \cup \theta_{u,n} \subset P_n^{(\Lambda)} \subset P^{(\Lambda)}$ (2.8) is equivalent to

(2.9)
$$(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) > 0 \text{ for } \alpha \in Q_{\Lambda} \cup \theta_{u,n}.$$

PROOF OF PROPOSITION 2.7. By the definitions involved $i_0 \in S(\Lambda, q(\Lambda; \theta))$. Conversely let $i \in S(\Lambda, q(\Lambda; \theta))$ so $q(\Lambda; \theta_i) \stackrel{\text{(i)}}{=} q(\Lambda; \theta)$ and $\theta_{u_i, n} \stackrel{\text{(ii)}}{=} \theta'_{u', n}$ for some $\theta' = u' + m' \supset \mathfrak{b}_{\Lambda}$ for which $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(m')) \stackrel{\text{(iii)}}{=} 0$. Let $N_{\Lambda} = \{\alpha \in P_n^{(\Lambda)}: (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0\}$. Since $\Lambda + \delta - \delta^{(\Lambda)}$ is $P^{(\Lambda)}$ -dominant (as just noted) and since $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(m)) = 0$,

$$P_n^{(\Lambda)} = N_{\Lambda} \cup (P_n^{(\Lambda)} - \Delta(m)) \stackrel{\text{(iv)}}{=} N_{\Lambda} \cup \theta_{u,n} \quad \text{(cf. (2.4))}$$

$$\Rightarrow Q_{\Lambda} = Q_{\Lambda} \cap N_{\Lambda} \cup Q_{\Lambda} \cap \theta_{u,n}.$$

By (2.8)

$$N_{\Lambda} \cap \theta_{u,n} = Q_{\Lambda} \cap N_{\Lambda} = \emptyset \Rightarrow n \stackrel{\text{def}}{=} |\Delta_n^+| = |P_n^{(\Lambda)}| \stackrel{(\mathbf{v})}{=} |N_{\Lambda}| + |\theta_{u,n}|$$
 and $Q_{\Lambda} \subset \theta_{u,n}$. Then $q(\Lambda; \theta) = |Q_{\Lambda}| + n - |\theta_{u,n}|$ by (2.5). Similarly from (iii)

$$P_n^{(\Lambda)} \stackrel{\text{(vi)}}{=} (N_{\Lambda} - \theta'_{u',n}) \cup \theta'_{u',n} \Rightarrow Q_{\Lambda} = Q_{\Lambda} \cap \theta'_{u',n} \quad \text{(again since } Q_{\Lambda} \cap N_{\Lambda} = \emptyset)$$
$$\Rightarrow q(\Lambda; \theta') = |Q_{\Lambda}| + n - |\theta'_{u',n}|,$$

so by (i), (ii)

$$q(\Lambda; \theta) = q(\Lambda; \theta') \Rightarrow |\theta_{u,n}| \stackrel{\text{(vii)}}{=} |\theta'_{u',n}|.$$

Then from (v), (vi),

$$|N_{\Lambda}| + |\theta_{u,n}| = |N_{\Lambda} - \theta'_{u',n}| + |\theta'_{u',n}| \Rightarrow |N_{\Lambda}| = |N_{\Lambda} - \theta'_{u',n}|$$
$$\Rightarrow N_{\Lambda} = N_{\Lambda} - \theta'_{u',n} \Rightarrow N_{\Lambda} \cap \theta'_{u',n} = \emptyset,$$

so by (iv) $\theta'_{u',n} \subset \theta_{u,n}$; i.e. by (ii), (vii) $\theta_{u_i,n} = \theta_{u,n}$. But $\theta_{u,n} = \theta_{u_{i_0},n}$; hence $i = i_0$, as desired. Q.E.D.

For the sake of completeness we give the "mild condition" on λ referred to prior to (1.3). It is (cf. (2.9))

(2.10)
$$(\lambda + \delta - \delta^{(\lambda)}, \alpha) > 0 \text{ for each } \alpha \in P_n^{(\lambda)}.$$

3. A vanishing theorem and statement of the main result. We assume now that G/K has a G-invariant holomorphic structure so fixed that the space of antiholomorphic tangent vectors at the origin is given by

$$\mathfrak{p}^{-} = \sum_{\alpha \in \Delta_{n}^{+}} \mathfrak{g}_{-\alpha}$$

(cf. (1.1)). This is equivalent to requiring that every $\alpha \in \Delta_n^+$ should be *totally positive*; i.e. $\alpha + \beta \in \Delta$ for $\beta \in \Delta_k \Rightarrow \alpha + \beta \in \Delta_n^+$. Then also

(3.2)
$$G/H \to G/K$$
 and $\Gamma \backslash G/H \to \Gamma \backslash G/K$ are holomorphic fibrations.

As we shall wish to make immediate applications of the results of [7, 8] we assume also that the complexification of G is simply connected. In general if $P = P_k \cup P_n \subset \Delta$ is a system of positive roots compatible with a G-invariant holomorphic structure on G/K (i.e. every $\alpha \in P_n$ is totally positive), so is the conjugate system $P_k \cup -P_n$ which we shall denote by \overline{P} . If $\lambda \in \mathcal{F}$ we also denote by λ the character of H whose differential is λ and thus we consider the cohomology $H^q(Y, L_\lambda)$ defined in §1. As $\Lambda \in \mathcal{F}'_0$ is the Δ_k^+ -highest weight of an irreducible K module the sheaf $\mathcal{O}_{\Lambda} \to \Gamma \backslash G/K$ and cohomology $H^q(\Gamma \backslash G/K, \mathcal{O}_{\Lambda})$ are defined similarly.

THEOREM 3.3. Let $\lambda \in \mathfrak{h}^*$ be an integral form. If $(\lambda + \delta_k, \alpha) = 0$ for some $\alpha \in \Delta_k^+$ then $H^q(Y, \mathcal{L}_{\lambda}) = 0$ for every q. Assume $\lambda + \delta$ is regular (so in particular $(\lambda + \delta_k, \alpha) \neq 0$ for every $\alpha \in \Delta_k^+$) and assume every $\alpha \in P_n^{(\lambda)}$ is totally positive (cf. (2.1)). Then $H^q(Y, \mathcal{L}_{\lambda}) = 0$ unless q has the specific form

(3.4)
$$q(\lambda, \theta) \stackrel{\text{def}}{=} |\{\alpha \in \Delta_k^+ : (\lambda + \delta, \alpha) < 0\}| + q(\lambda; \theta)$$
$$= |\{\alpha \in \Delta_k^+ : (\lambda + \delta, \alpha) < 0\}| + 2|\theta_{u,n} \cap Q_{\lambda}| - |\theta_{u,n}| + |Q_{\lambda}'|$$

for some parabolic subalgebra $\theta=m+u\supset \mathfrak{b}_{\lambda}$ for which $(\lambda+\delta-\delta^{(\lambda)},\Delta(m))=0$; see (2.1),(2.3),(2.4),(2.5). On the other hand suppose we are given a parabolic subalgebra $\theta=m+u\supset \mathfrak{b}_{\lambda}$ for which $(\lambda+\delta-\delta^{(\lambda)},\Delta(m))=0$ (where we still assume $\lambda+\delta$ is regular and every $\alpha\in P_n^{(\lambda)}$ is totally positive). Let $\{\theta_i=m_i+u_i\}_{i=1}^t$ be a representative collection of parabolic subalgebras containing \mathfrak{b}_{λ} (as defined earlier) and define for an integer $q\geq 0$

$$S(\lambda, q) = \{i: q(\lambda; \theta_i) = q \text{ and } \theta_{u_i, n} = \theta'_{u', n}$$

$$for \text{ some parabolic subalgebra } \theta' = m' + u' \supset \mathfrak{b}_{\lambda}$$

$$with \ (\lambda + \delta - \delta^{(\lambda)}, \Delta(m')) = 0\}.$$

Let $\mu(\lambda, \theta_i)$ be the unique Δ_k^+ -dominant integral element in the W_k -orbit of $\lambda + \delta - \delta^{(\lambda)} + \langle \theta_{u_i,n} \rangle$. Then for $i \in S(\lambda, q)$ the irreducible G-representation $\pi_{\mu(\lambda, \theta_i)}$ with $\Delta_k^+ \cup -P_n^{(\lambda)}$ -highest weight $\mu(\lambda, \theta_i)$ is unitarizable and the multiplicities $m_{\pi_{\mu(\lambda, \theta_i)}}$ in $L^2(\Gamma \setminus G)$ satisfy

(3.6)
$$\dim H^{q(\lambda,\theta)}(Y,\mathcal{L}_{\lambda}) = \sum_{i \in S(\lambda,q(\lambda;\theta))} m_{\pi_{\mu(\lambda,\theta_i)}}(\Gamma).$$

PROOF. The fibration $\Gamma \backslash G/H \to \Gamma \backslash G/K$ in (3.2) gives rise to a spectral sequence which degenerates, by the Borel-Weil Theorem. If $\lambda + \delta$ is regular and $\Lambda(\lambda) \stackrel{\text{def}}{=} w(\lambda + \delta_k) - \delta_k \in \mathcal{F}'_0$, where $w \in W_k$ is the unique element such that $(w(\lambda + \delta_k), \Delta_k^+) > 0$, then one obtains, consequently,

(3.7)
$$H^{q}(Y, \mathcal{L}_{\lambda}) = H^{q-q_0}(\Gamma \backslash G/K, \mathcal{O}_{\Lambda(\lambda)}) \text{ for } q \geq 0$$

where $q_0 = |w(-\Delta_k^+) \cap \Delta_k^+| = |\{\alpha \in \Delta_k^+: (\lambda + \delta, \alpha) < 0\}|$. Moreover $H^q(Y, \mathcal{L}_{\lambda}) = 0$ if $\lambda + \delta_k$ is Δ_k -singular; cf. Corollaries 5.15, 5.16 and Theorem 5.24 of [1]. Note that by our assumptions on Δ^+ , $(\delta_n, \Delta_k^+) = 0 \Rightarrow q_0 = |\{\alpha \in \Delta_k^+: (\lambda + \delta_k, \alpha) < 0\}|$, also. From the main result of [7, Theorem 2.3] applied to the right-hand side in (3.7), one obtains the vanishing results stated in Theorem 3.3. Consider the second part of Theorem 3.3. $\{w\theta_i\}_{i=1}^t$ is a representative collection of parabolic subalgebras containing $\mathfrak{b}_{\Lambda(\lambda)}$, where $P^{(\Lambda(\lambda))} \triangleq wP^{(\lambda)}$, $(w\theta_i)_{wu_i,n} \stackrel{\text{(i)}}{=} w\theta_{u_i,n}$ (since $w \in W_k \Rightarrow wP_n^{(\lambda)} = P_n^{(\lambda)}$, as every $\alpha \in P_n^{(\lambda)}$ is totally positive), and $Q_{\Lambda(\lambda)} = wQ_{\lambda}$; hence $q(\lambda; \theta_i) \stackrel{\text{(ii)}}{=} q(\Lambda(\lambda); w\theta_i)$; see (2.1), (2.3), (2.5). If we put

$$\underline{S}(\Lambda(\lambda),q) = \{i: q(\Lambda(\lambda); w\theta_i) = q \text{ and } (w\theta_i)_{wu_i,n} = \mathfrak{p}_{l,v}$$
 for some parabolic subalgebras $\mathfrak{p} = l + v \supset \mathfrak{b}_{\Lambda(\lambda)}$ with $(\Lambda(\lambda) + \delta - \delta^{(\Lambda(\lambda))}, \Delta(l)) = 0\}.$

where $q \geq 0$ is an integer, then by Theorem 3.26 of [8] the irreducible G-representation π_{μ_i} with $\overline{P}(\Lambda(\lambda))$ -highest weight

$$\mu_i \stackrel{\text{def}}{=} \Lambda(\lambda) + \delta - \delta^{(\Lambda(\lambda))} + \langle (w\theta_i)_{wu_i,n} \rangle$$

is unitarizable for $i \in \underline{S}(\Lambda(\lambda), q)$ and the multiplicities $m_{\pi_{\mu_i}}(\Gamma)$ in $L^2(\Gamma \setminus G)$ satisfy

(3.8)
$$\dim H^{q}(\Gamma \backslash G/K, \mathcal{O}_{\Lambda(\lambda)}) = \sum_{i \in \underline{S}(\Lambda(\lambda), q)} m_{\pi_{\mu_{i}}}(\Gamma)$$

for $q \geq 0$. Now (ii) and the fact that $\Lambda(\lambda) + \delta - \delta^{(\Lambda(\lambda))} \stackrel{\text{(iii)}}{=} w(\lambda + \delta - \delta^{(\lambda)})$ imply that $S(\lambda, q) = \underline{S}(\Lambda(\lambda), q)$. Also

$$\overline{P}^{(\Lambda(\lambda))} \stackrel{\mathrm{def}}{=} \Delta_k^+ \cup -P_n^{(\Lambda(\lambda))} = \Delta_k^+ \cup -w P_n^{(\lambda)} \stackrel{\mathrm{(iv)}}{=} \Delta_k^+ \cup -P_n^{(\lambda)},$$

and by (i), (iii) $\mu_i = w(\lambda + \delta - \delta^{(\lambda)} + \langle \theta_{u_i,n} \rangle)$; i.e. μ_i is the unique Δ_k^+ -dominant integral element in the W_k -orbit of $\lambda + \delta - \delta^{(\lambda)} + \langle \theta_{u_i,n} \rangle$ so by definition of $\mu(\lambda, \theta_i)$, $\mu(\lambda, \theta_i) = \mu_i$. Note that (iv) can also be written as $\Delta_k^+ \cup -P_n^{(\lambda)} = w\overline{P}^{(\lambda)}$. Theorem 3.3 now follows (i.e. (3.6) follows) by (3.7), (3.8) if we take q there equal to $q(\lambda, \theta), q(\lambda; \theta)$ respectively, since $q(\lambda, \theta) - q_0 = q(\lambda; \theta)$ by (3.4). Q.E.D.

A corollary of Theorem 3.3 is the following main result.

THEOREM 3.9. Let $\lambda \in \mathfrak{h}^*$ be an integral form such that $\lambda + \delta$ is regular and such that every $\alpha \in P_n^{(\lambda)}$ is totally positive (cf. (2.1)). Let $\theta = m + u$ be a parabolic subalgebra containing the Borel subalgebra $\mathfrak{b}_{\lambda} = \mathfrak{h} + \sum_{\alpha \in P(\lambda)} \mathfrak{g}_{\alpha}$ for which $(\lambda + \delta - \delta^{(\lambda)}, \Delta(m)) = 0$ and let $\mu(\lambda, \theta)$ be the unique Δ_k^+ -dominant integral element in the W_k -orbit of $\lambda + \delta - \delta^{(\lambda)} + \langle \theta_{u,n} \rangle$; cf. (2.1), (2.3), (2.4). Then the irreducible

G-representation $\pi_{\mu(\lambda,\theta)}$ with $\Delta_k^+ \cup -P_n^{(\lambda)}$ -highest weight $\mu(\lambda,\theta)$ is unitarizable and if, in particular, λ satisfies

(3.10)
$$(\lambda + \delta - \delta^{(\lambda)}, \alpha) \neq 0 \quad \text{for } \alpha \in Q_{\lambda} \cup \theta_{u,n}$$

then the multiplicity $m_{\pi_{\mu(\lambda,\theta)}}(\Gamma)$ of $\pi_{\mu(\lambda,\theta)}$ in $L^2(\Gamma\backslash G)$ satisfies

(3.11)
$$m_{\pi_{u(\lambda,\theta)}}(\Gamma) = \dim H^{q(\lambda)+n-|\theta_{u,n}|}(Y,\mathcal{L}_{\lambda})$$

where $q(\lambda)$ is given by (1.2), $2n = \dim_R G/K$ (i.e. $n = |\Delta_n^+|$); $q(\lambda) + n - |\theta_{u,n}| = q(\lambda, \theta)$ (see (3.4)) and (3.10) implies in fact that $Q_{\lambda} \subset \theta_{u,n}$. In general, apart from the hypothesis (3.10), (3.11) holds with $q(\lambda) + n - |\theta_{u,n}|$ replaced by $q(\lambda, \theta)$ if $S(\lambda, q(\lambda; \theta))$ in (3.6) reduces to a single element. The cohomology $H^*(Y, \mathcal{L}_{\lambda})$ can survive only in dimensions sharply specified in Theorem 3.3.

PROOF. We shall exploit freely the notation of the preceding proof. As $\{\theta_i\}_{i=1}^t$ is a representative collection of parabolics $\supset \mathfrak{b}_{\lambda}$, $\theta_{u,n} \stackrel{(\mathbf{v})}{=} \theta_{u_{i_0},n}$ for some unique i_0 , $1 \le i_0 \le t$; equivalently, for $w\theta \supset \mathfrak{b}_{\Lambda(\lambda)}$,

$$(w\theta)_{wu,n} = (w\theta_{i_0})_{wu_{i_0},n} = w\theta_{u_{i_0},n}.$$

Also

$$(\Lambda(\lambda) + \delta - \delta^{(\lambda)}, \Delta(wm)) = (w(\lambda + \delta - \delta^{(\lambda)}), w\Delta(m)) = (\lambda + \delta - \delta^{(\lambda)}, \Delta(m)) = 0,$$

by hypothesis, so $i_0 \in S(\Lambda(\lambda), q(\Lambda(\lambda); w\theta))$ by Proposition 2.7 (applied to $w\theta$), where

$$S(\Lambda(\lambda), q(\Lambda(\lambda); w\theta)) \equiv \underline{S}(\Lambda(\lambda), q(\Lambda(\lambda); w\theta))$$

(in the notation of the preceding proof)

$$\stackrel{\text{(vi)}}{\equiv} S(\lambda, q(\lambda; \theta)),$$

and where $\mu(\lambda, \theta_{i_0}) = \mu_{i_0} = w(\lambda + \delta - \delta^{(\Lambda)} + \langle \theta_{u_{i_0}, n} \rangle) = w(\lambda + \delta - \delta^{(\lambda)} + \langle \theta_{u, n} \rangle)$, by (v). That is, $\mu(\lambda, \theta) = \mu_{i_0}$ by definition of $\mu(\lambda, \theta)$ and thus $\pi_{\mu(\lambda, \theta)} \stackrel{\text{(viii)}}{=} \pi_{\mu_{i_0}} = \pi_{\mu(\lambda, \theta_{i_0})}$ is unitarizable (as we have already observed that π_{μ_i} is unitarizable for any $i \in \underline{S}(\Lambda(\lambda), q), q \geq 0$) and $\mu(\lambda, \theta)$ is a $\overline{P}^{(\Lambda(\lambda))}$ -highest weight; $\overline{P}^{(\Lambda(\lambda))} = \Delta_k^+ \cup -P_n^{(\lambda)}$. It should be noted that the unitarizability of $\pi_{\mu(\lambda, \theta)}$ also follows directly from [4] of course. Now if λ satisfies (3.10), then $\Lambda(\lambda)$ satisfies $(\Lambda(\lambda) + \delta - \delta^{(\lambda)}, \alpha) \neq 0$ for $\alpha \in Q_{\Lambda(\lambda)} \cup (w\theta)_{wu,n} = wQ_{\lambda} \cup w\theta_{u,n} = w(Q_{\lambda} \cup \theta_{u,n})$ so by Proposition 2.7 (again applied to $w\theta$), $Q_{\Lambda(\lambda)} \subset (w\theta)_{wu,n}, q(\Lambda(\lambda); w\theta) = |Q_{\Lambda(\lambda)}| + |\Delta_n^+| - |(w\theta)_{wu,n}|$, and $S(\Lambda(\lambda), q(\Lambda(\lambda); w\theta)) = \{i_0\}$. That is, $Q_{\lambda} \subset \theta_{u,n}, q(\lambda; \theta) = |Q_{\lambda}| + n - |\theta_{u,n}|$, and (by (vi)) $S(\lambda, q(\lambda; \theta)) \stackrel{\text{(viii)}}{=} \{i_0\}$. In particular,

$$q(\lambda, \theta) \stackrel{\text{def.}}{=} |\{\alpha \in \Delta_k^+ : (\lambda + \delta, \alpha) < 0\}| + q(\lambda; \theta) \quad (\text{see } (3.4))$$
$$= q(\lambda) + n - |\theta_{u,n}|$$

(see (1.2) and (2.1)), and by (vii), (viii) equation (3.6) reduces to equation (3.11). If $S(\lambda, q(\lambda; \theta))$ reduces to a single element, even without assumption (3.10), then $S(\lambda, q(\lambda; \theta)) = \{i_0\}$ and again (vii) and (3.6) imply (3.11) provided $q(\lambda) + n - |\theta_{u,n}|$ in (3.11) is replaced, more generally, by $q(\lambda, \theta)$. Q.E.D.

REMARKS. We have seen that $\mu(\lambda,\theta)$ in Theorem 3.9 is given by $\mu(\lambda,\theta)=\Lambda(\lambda)+\delta-\delta^{(\Lambda(\lambda))}+w\langle\theta_{u,n}\rangle$ where $w\in W_k$ is the unique element such that $(w(\lambda+\delta),\Delta_k^+)>0$ and $\Lambda(\lambda)=w(\lambda+\delta_k)-\delta_k\in\mathcal{F}_0'$ (see (2.2)). Note that $(w(\lambda+\delta),\Delta_k^+)=(w(\lambda+\delta_k),\Delta_k^+)$ since $(w\delta_n,\Delta_k^+)=(\delta_n,\Delta_k^+)=0$. Also in Theorem 3.9, $\Delta_k^+\cup -P_n^{(\lambda)}=w\overline{P}^{(\lambda)}=\overline{P}^{(\Lambda(\lambda))}$. Now suppose we choose $\theta=\mathfrak{b}_\lambda$ in Theorem 3.9. Then

$$\theta_{u,n} = P_n^{(\lambda)} \Rightarrow \mu(\lambda, \mathfrak{b}_{\lambda}) = \Lambda(\lambda) + \delta_n^{(\Lambda(\lambda))} + \delta_n$$

 $(P_n^{(\lambda)} = w P_n^{(\lambda)} = P_n^{(\Lambda(\lambda))})$. That is, $\mu(\lambda, \mathfrak{b}_{\lambda})$ is the lowest K-type of the discrete series representation corresponding to the regular element $\Lambda(\lambda) + \delta$. The latter representation is unitarily equivalent to that corresponding to the regular element $\lambda + \delta$ since $\Lambda(\lambda) + \delta = w(\lambda + \delta)$ with $w \in W_k$. Thus $\pi_{\mu(\lambda,\mathfrak{b}_{\lambda})}$ is the holomorphic discrete series representation of G corresponding to the regular element $\lambda + \delta$ and the holomorphic Weyl chamber $\Delta_k^+ \cup -P_n^{(\lambda)}$. Condition (3.10) then becomes condition (2.10), and (3.11) reduces to (1.3)(ii). Also in (3.4) (again for the choice $\theta = \mathfrak{b}_{\lambda}$)

$$2|\theta_{u,n} \cap Q_{\lambda}| - |\theta_{u,n}| + |Q_{\lambda}'| = 2|Q_{\lambda}| - n + |Q_{\lambda}'| = |Q_{\lambda}| \Rightarrow q(\lambda, b_{\lambda}) = q(\lambda)$$

in (1.2). That is, the vanishing result in Theorem 3.3 reduces to (1.3)(i).

A special case of interest is the case $Q_{\lambda} = \emptyset$; i.e. λ satisfies $(\lambda + \delta, \Delta_n^+) < 0$ or, equivalently $(\Lambda(\lambda) + \delta, \Delta_n^+) < 0$ since $w\Delta_n^+ = \Delta_n^+$. Then $P_n^{(\lambda)} = -\Delta_n^+ \Rightarrow$ every $\alpha \in P_n^{(\lambda)}$ is totally positive, and $q(\lambda; \theta)$ in (3.4) is $2 \cdot 0 - |\theta_{u,n}| + n = n - |\theta_{u,n}|$, so that $q(\lambda, \theta) = |\{\alpha \in \Delta_k^+: (\lambda + \delta, \alpha) < 0\}| + n - |\theta_{u,n}|$. (3.5) becomes for $q = q(\lambda; \theta) = n - |\theta_{u,n}|$

$$S(\lambda, q(\lambda; \theta)) = \{i: |\theta_{u_i,n}| = |\theta_{u,n}| \text{ and } \theta_{u_i,n} = \theta'_{u',n}$$
(3.12) for some parabolic subalgebra $\theta' = m' + u' \supset \mathfrak{b}_{\lambda}$
with $(\lambda + \delta - \delta^{(\lambda)}, \Delta(m')) = 0\}$

for a representative collection $\{\theta_i = m_i + u_i\}_{i=1}^t \supset \mathfrak{b}_{\lambda}$; cf. (2.3), (2.4). Also

$$P^{(\Lambda(\lambda))} = \Delta_k^+ \cup -\Delta_n^+ = \overline{\Delta}^+ \Rightarrow \delta - \delta^{(\Lambda(\lambda))} = 2\delta_n \Rightarrow \mu(\lambda, \theta) = \Lambda(\lambda) + 2\delta_n + w\langle \theta_{u,n} \rangle.$$

Thus Theorem 3.9 simplifies as follows.

THEOREM 3.13. Let $\lambda \in \mathfrak{h}^*$ be an integral form such that $\lambda + \delta$ is regular and such that $(\lambda + \delta, \Delta_n^+) < 0$. Let $\theta = m + u \supset \mathfrak{b}_{\lambda}$ as in Theorem 3.9 with $(\lambda + \delta - \delta^{(\lambda)}, \Delta(m)) = 0$ or, equivalently, $(\Lambda(\lambda) + 2\delta_n, w\Delta(m)) = 0$ in the above notation. Then the irreducible G-representation $\pi_{\mu(\lambda,\theta)}$ with Δ^+ -highest weight $\mu(\lambda,\theta) = \Lambda(\lambda) + 2\delta_n + w\langle \theta_{u,n} \rangle$ is unitarizable and its multiplicity $m_{\pi_{\mu(\lambda,\theta)}}(\Gamma)$ in $L^2(\Gamma \setminus G)$ satisfies

(3.14)
$$m_{\pi_{u(\lambda,\theta)}}(\Gamma) = \dim H^{q(\lambda)+n-|\theta_{u,n}|}(Y,\mathcal{L}_{\lambda})$$

where $q(\lambda) = |\{\alpha \in \Delta_k^+: (\lambda + \delta, \alpha) < 0\}| = |w(-\Delta_k^+) \cap \Delta_k^+|$, provided that either (i)' $(\lambda + \delta - \delta^{(\lambda)}, \alpha) \neq 0$ for $\alpha \in \theta_{u,n}$ (or, equivalently, $(\Lambda(\lambda) + 2\delta_n, \beta) \neq 0$ for $\beta \in w\theta_{u,n}$) or (ii)' the set $S(\lambda, q(\lambda; \theta))$ in (3.12) reduces to a single element. $H^q(Y, \mathcal{L}_{\lambda}) = 0$ unless $q = q(\lambda) + n - |\theta'_{u',n}|$ for some parabolic $\theta = m' + u' \supset \mathfrak{b}_{\lambda}$ such that $(\lambda + \delta - \delta^{(\lambda)}, \Delta(m')) = 0$.

Note. In Theorem (3.13),

$$P^{(\lambda)} = w^{-1} P^{(\Lambda(\lambda))} = w^{-1} \Delta_k^+ \cup - w^{-1} \Delta_n^+ = w^{-1} \Delta_k^+ \cup - \Delta_n^+$$

(see equation a) in the proof of Theorem 3.3) so that $\lambda + \delta - \delta^{(\lambda)} = \lambda + 2\delta_n + \delta_k - w^{-1}\delta_k$.

Finally we note that for $G = \operatorname{Sp}(m, R)$ or $\operatorname{SO}^*(2m)$ the set $S(\lambda, q(\lambda; \theta))$ in (3.12) reduces to a single element, for in these cases

$$\begin{split} \{|\theta_{u,n}| \colon \theta \supset \mathfrak{b}_{\lambda}\} &= \left\{\frac{(m+1)m - (r+1)r}{2} \colon 0 \leq r \leq m\right\}, \\ &\qquad \left\{\frac{(m-1)m - (r-1)r}{2} \colon 1 \leq r \leq m\right\}, \quad \text{respectively}; \end{split}$$

cf. Table 3.4 of [7]. Thus $|\theta_{u_r,n}| \neq |\theta_{u_j,n}|$ for $r \neq j$

COROLLARY 3.15. For $G = \operatorname{Sp}(m,R)$ $(m \geq 1)$ or $G = \operatorname{SO}^*(2m)$ $(m \geq 2)$ condition (ii)' in Theorem 3.13 is always satisfied. Hence (3.14) holds for λ, θ subject to the conditions of Theorem 3.13 prior to (3.14).

In a future study we hope to extend the results of this paper to more general unitary representations having nontrivial relative (\mathfrak{g}, K) cohomology.

REFERENCES

- H. Fischer and F. Williams, Borel-Le Potier diagrams—calculus of their cohomology bundles, Tôhoku Math. J. 36 (1984), 233-251.
- P. Griffiths and W. Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253-302.
- R. Langlands, Dimension of spaces of automorphic forms, Proc. Sympos. in Pure Math., Vol. 9, Amer. Math. Soc., Providence, R.I., 1966, pp. 253-257.
- 4. R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1-24.
- 5. W. Schmid, On a conjecture of Langlands, Ann. of Math. (2) 93 (1971), 1-42.
- G. Warner, Selberg's trace formula for nonuniform lattices: The R-rank one case, Advances in Math., Suppl. Studies, 6, Academic Press, New York, 1979, pp. 1-142.
- F. Williams, Vanishing theorems for type (0,q) cohomology of locally symmetric spaces (I), Osaka J. Math. 18 (1981), 147-160.
- 8. $\underline{\hspace{1cm}}$, An alternating sum formula for the multiplicatives of unitary highest weight modules in $L^2(\Gamma\backslash G)$, unpublished manuscript.
- Discrete series multiplicities in L²(Γ\G) (II): Proof of Langlands' conjecture, Amer. J. Math. 107 (1985), 367-376.

Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003